t(s^2+t^2)ds-s(s^2-t^2)dt=0

Simple and best practice solution for t(s^2+t^2)ds-s(s^2-t^2)dt=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t(s^2+t^2)ds-s(s^2-t^2)dt=0 equation:


Simplifying
t(s2 + t2) * ds + -1s(s2 + -1t2) * dt = 0

Reorder the terms for easier multiplication:
t * ds(s2 + t2) + -1s(s2 + -1t2) * dt = 0

Multiply t * ds
dst(s2 + t2) + -1s(s2 + -1t2) * dt = 0
(s2 * dst + t2 * dst) + -1s(s2 + -1t2) * dt = 0

Reorder the terms:
(dst3 + ds3t) + -1s(s2 + -1t2) * dt = 0
(dst3 + ds3t) + -1s(s2 + -1t2) * dt = 0

Reorder the terms for easier multiplication:
dst3 + ds3t + -1s * dt(s2 + -1t2) = 0

Multiply s * dt
dst3 + ds3t + -1dst(s2 + -1t2) = 0
dst3 + ds3t + (s2 * -1dst + -1t2 * -1dst) = 0

Reorder the terms:
dst3 + ds3t + (1dst3 + -1ds3t) = 0
dst3 + ds3t + (1dst3 + -1ds3t) = 0

Reorder the terms:
dst3 + 1dst3 + ds3t + -1ds3t = 0

Combine like terms: dst3 + 1dst3 = 2dst3
2dst3 + ds3t + -1ds3t = 0

Combine like terms: ds3t + -1ds3t = 0
2dst3 + 0 = 0
2dst3 = 0

Solving
2dst3 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Divide each side by '2'.
dst3 = 0

Simplifying
dst3 = 0

The solution to this equation could not be determined.

See similar equations:

| 2x-5y+3z=27 | | x+-4=7 | | 2+4x=72 | | 14x+2(3+x)=-14 | | 2(3x-4)=30 | | 38-d=q | | 7y-6+y=(y+9y) | | x+2+4x=72 | | 27+2k=5k | | 3(-4p+3)-4=-43 | | 30-2r=4r | | 6(X-3)=6X+3 | | 4x-2/3=6 | | 168=-84x | | 4-8xy=0 | | 3a+2b=6.5 | | 4(w-6)=7w+12 | | 4x-95=11x+66 | | 6d+24=4d-24+2d | | p^2+6=6+p | | 18x^6y^2z/2x^3y^2 | | p^2+6=6+6 | | 5y-4x=-22 | | (3z+8)(z+5)=0 | | (1/5)-(x-4)=-(2/5) | | y=.02x+.5 | | 40+15+0.25*100=x | | 40+15+0.25*100= | | 5n+16=1+n-5 | | 4e^5x=9 | | 5x^4y^2/8x^4y^5 | | 6x(2x-3)-5(2x-3)= |

Equations solver categories